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Abstract

This paper describes a more efficient paired comparis
method that reduces the number of trials necessary 
converting a table of paired comparisons into scaler da
Instead of comparing every pair of samples (the comple
method), a partial method is used that makes mo
comparisons between closer samples than between m
distant samples. A sorting algorithm is used to efficient
order the samples with paired comparisons, and ea
comparison is recorded. When the sorting is complete
more trials will have been conducted between clos
samples than between distant samples. A regression is u
to scale the resulting comparison matrix into a on
dimensional perceptual quality estimate.

Introduction

To quantify subjective image quality, experimenters usua
rely on one of several methods. In a direct method, t
subjects are required to quantify their subjective impressi
of quality (with a number or graphic scale, for example) an
(with some assumptions) this data can be averaged betw
observers. These methods suffer from several drawbacks
overview of which can be found in Riskey1. One of the
major problems is that this metric is unit-less. Th
subjective scaling depends on many factors, and when
sample is scaled in one experiment, it will almost alwa
have a different value then when it is scaled in anoth
experiment.

Another method relies on threshold judgments. The
methods use the assumption that image fidelity is the sa
as image quality. Quality is then reduced to the detectabil
of differences between an original image and a distort
image. One way to quantify the detectability is b
measuring the percent of subjects who can correctly ident
which of two images has been distorted. When ima
quality varies monotonically with some adjustabl
parameter, the parameter can be adjusted so the distortio
at the threshold of visibility. This method has sever
problems when used to evaluate image quality. First, t
threshold for detecting a distortion does not genera
predict the perceived image quality and thresho
measurements can not be extrapolated to predict sup
threshold quality2. A second problem is that it is not always
possible to adjust the distortions to threshold level. F
example, in hardcopy images, if we wanted to compare t
quality of images from two printers, the quality of the
samples can not typically be adjusted to be at a thresh
level.
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The method of pair-wise comparisons generates relia
and informative data about the relative quality of tw
images. Two image samples are compared to each othe
several subjects. The percentage of the time one samp
preferred over the other is used as an index of the rela
quality of the two samples. The disadvantage of this meth
is that it requires many comparisons, typically 10 or so 
every pair of samples.

One of the major advantages of this method is that 
data can be converted to scaler data (with some additio
assumptions, which will be discussed). Under the scal
assumptions however, not every pair of comparisons yie
equally useful data. The efficiency of the method of pair
comparisons can be improved by carefully selecting a sub
of the pairs for comparison.

Thurstone’s Law of Comparative Judgements.
Consider a set of test samples that are judged aga

one another pair-wise, across a set of subjects, so that 
X N matrix C of times-preferred is compiled, where N is th
number of samples. Each element Ci,j represents the numbe
of times sample i was judged to have higher quality th
sample j. When subjects do not agree on which sample 
better, there is said to be “confusion” between the t
samples.

 Thurstone’s case V method of comparativ
judgements3 can be applied to determine the relativ
qualities of all of the samples if:
1. Each sample has a single value that can describe

quality, qi.
2. Each observer estimates the quality of this sample w

a value from a normal distribution around this actu
quality.

3. Each sample has the same perceptual variance.
4. Each comparison is independent.

If these assumptions are valid, then the quality of ea
sample i can be described by a scaler value qi with units of
standard-deviations of preference. The distance between
samples d’i,j in units of the standard deviation can b
estimated with the inverse cumulative-normal function (
score).
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One Dimensional Scaling
If each sample is compared against every other sam

a sufficient number of times, then we can use a metho
determine an estimate of each samples quality value. B
on our first assumption, all of the samples can be positio
on a one dimensional quality line. We can estimate 
distance of a sample to the mean of all samples by ta
the mean distance between the sample and all o
samples4.

2. ′ ≈
′∑

d
d

Ni mean

i j

,

,

Unfortunately, this approach suffers from seve
problems. The certainty of the distance estimates va
inversely with their magnitudes. When the distance is la
and there are not enough subjects, there may be unani
agreement between all of the subjects. If this happens, 
the distance is estimated as infinite, so the mean can n
computed.

One solution is to use a weighted average, based o
certainty of the distance estimates5. The infinite distance
estimates can be forced to have finite distances by assu
that the actual distance was the minimum distance pos
such that there was a 50% chance that the subjects w
have judged the samples unanimously. This will typically
an underestimate of the actual distance, and 
underestimate is more severe when there are fewer trials

In general, this method only provides approximat
correct results when the number of trials in each compar
is large. The number of trials required to do ea
comparison goes up with the number of samples at the r

3. Trials
N N

=
−( )2

2

When the number of samples is large, the dista
between the extreme samples tends to get larger as we
a very large number of trials is required to get accu
results.

The new method we describe here does not con
trials between every pair of samples, and it conducts fewer
trials between distant samples. The method described a
needs more trials for these distant samples, in orde
obtain accurate results.

An alternative approach is to use regression6. A set of
estimated q values is adjusted to maximize the probab
that a comparison matrix C could have randomly resu
from the experiment if the estimated values were the ac
values. A regression is required when the compar
matrix is sparse.

The probability that a specific comparison matrix 
would have been the result of an experiment where e
pair of samples had an actual distance of d’i,j is:

4. P
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where Pi,j is the expected percentage of subjects to pre
sample i over sample j. Ci,j is the number of subjects who
preferred sample i over sample j, and Cj,i is the number of
subjects who preferred sample j over sample i. The first p
of the equation inside of the product is the combinati
function that represents the number of different ways i,j

subjects can be chosen from the total population (Ci,j + Cj,i).
The second part of the equation is the probability that a
one sequence of preference decisions would be made.
chance of any specific comparison matrix occurring is 
product of the probabilities of each element of that mat
occurring.

The expected percentage preference is a function of
d’ distance between the two samples. It is the square roo
two times the cumulative normal function.

5. ′ = −d q qi j i j,
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π
We conduct a search for the set of q values t

maximizes the probability of obtaining the compariso
matrix C. In practice, since the probability of an exact set
data originating from any set of q values is always so sm
as to be difficult to compute, it is useful to compute the l
of Pexperiment. We then minimize the negative log probabilit
instead of maximizing equation 6. In other words, we u
the negative log of equation 6 as the stress function.

A second difficulty in the minimization procedure is th
problem with local minima. If approximate values for q a
found, it may not be possible to find a better value for a
individual qi, but a better solution can exist if several valu
are adjusted at the same time. This makes it difficult for 
regression tool we used to find a very good solution (
used the leastsq program from Matlab7).

Instead of regressing the absolute values of q, it
better to find the optimal values for the distances betwe
the nearest q values. To do this, we used an itera
procedure. We first used the previously described Z-sc
averaging method to estimate the correct ordering. We t
used leastsq to search for a set of distances between ne
neighbors that reduced the stress. We then used t
improved distance estimates to re-order the samples, 
iterated, until no further reduction in stress could be fou
This method converges very quickly, and produces a be
estimate of the q values than the averaging method. It 
has the advantage that it does not have trouble w
unanimous decisions.

Since a unanimous matrix entry has a finite chance
occurring from a given set of q values, we do not usua
need a special procedure to deal with unanimous ma
entries. For example, consider 3 samples; A, B, and C. If
comparison between A and C is unanimous, the best fitt
d’a,c would be infinite. But if there is some compariso
between A and B, and between B and C, then equatio
will only maximized when there is some finite distanc
between A and C.
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A difficulty arises when there are two separate class
of samples that are never confused. For example, there m
be confusions between A and B, but no confusions w
either A and C or B and C. In this case, A and B form on
class of samples, and C is a second class.

It is also possible to have overlapping classes. F
example, all subjects may agree that A has lower qual
than B and that B has lower quality than C, but there cou
be confusion between A and C. In this case, A and C fo
one class, and B forms a second class.

Overlapping classes could happen from random chan
if very few trials were conducted. When more trials ar
conducted, the existence of overlapping classes wou
indicate a probable violation in one or more of the case
assumptions. In the case of partial methods (which will 
described), few trials may have been conducted between
and B and between B and C, and many trials may have b
conducted between A and C, and this could cause the c
of overlapping classes.

In the case of non-overlapping classes, equation 4 w
be maximized when the classes are infinitely far apart. 
this case, not enough trials were conducted to estimate 
distance between the two classes. If more trials can not
conducted, a 50% probability lower-bound on the distan
may be computed by calculating the closest distance 
which the unanimous decisions would have occurred half
the time. This can be approximated by switching ½ of a tr
between the lowest sample in the higher class, and 
highest sample in the lower class before applying t
regression.

Using Sorting Methods for Paired Comparisons
The regression method allows us to find quality value

for partial comparison matrices. A partial compariso
matrix is one in which not every pair of samples i
compared. The number of comparisons needed goes up v
fast as the number of samples is increased, as can be se
equation 3. Further, not all comparisons provide the sa
amount of information. Comparisons between very dista
samples do not provide as accurate an estimate of dista
as nearby samples. By strategically choosing th
comparisons, a partial comparison matrix can be mo
efficient than a complete matrix.

For example, consider a set of samples A, B, C, and
spaced evenly 1 SD of quality apart. In the case of A and
the samples are separated by a d’ of 1. In this case,
equation 6 we would expect about 1 subject in 7 to misjud
the quality of the two, so a small number of trials cou
produce a reasonably good estimate of the distance. But
samples A and D which are separated by a d’ of 3, w
would only expect about 1 subject out of 20,000 to misjud
the samples. In this case, any practical number of tri
would always give us the same unanimous result. Aft
several hundred trials, we would only know that the distan
apart was at least a d’ of 2.

The heuristic we use here is to try to concentrate t
number of trials on comparisons between closer samples
the example, it is easy to see that we could obtain a go
estimate of the distance between A B, B C, and C D with f
fewer trials than it would take to estimate the distance A 
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directly. The distance between A and D can then 
obtained based on the small distance measurements u
the regression procedure previously described.

Therefore, it is seems useful to conduct more tri
between closer samples. However, we do not know 
quality distance between the samples until we ha
conducted the experiment so how can we conduct m
trials between samples that are close? Previous meth
have used an initial experiment to find the approxima
distances, and then more trials were conducted betw
closer samples5. In our method, we estimate the distances
we conduct the experiment. This has the advantage th
single method is used to conduct all of the trials. Further,
of the previously obtained information is used for each n
trial.

A paired comparison procedure can be used 
implement a sorting of the samples. There are seve
efficient sorting algorithms based on comparing tw
elements at a time, that require N log2 N rather than N2

comparisons between samples. Each comparison can
recorded to form a partial comparison matrix. Th
advantage of doing this is that a sorting algorithm m
include comparisons between nearest samples. This ass
that there will be one test between each nearest se
samples, and fewer checks between more distant sample

It is important to note that a method that used an N l2

N sorting procedure would have fewer trials and thus l
data than the N2 complete method. Therefore, it could not b
analyzed to provide as accurate an estimate of the orig
quality values. However, it would provide more informatio
per trial than the complete method.

One way to compare samples while sorting is to us
binary tree sorting method. A binary tree is formed, w
samples as the nodes. Each node of the tree is a partitio
element for a left sub-tree and a right sub-tree. The left s
tree consists of nodes that were all judged to be lowe
quality, and the right sub-tree consists of nodes that w
judged to be higher in quality. To add a new sample to
tree, the new sample is compared to the root node. If th
are no nodes in the tree, the sample is added as the
node. Otherwise, if the new sample is judged to be highe
quality, it is then added to the right sub-tree and if it 
judged to be lower in quality, it is then added to the left su
tree recursively. The samples can be added to the tree
random order. As the samples are added, a compar
matrix is constructed.

To improve the efficiency of the sorting, it is useful t
balance the tree after each comparison. This is done
rebuilding the tree so that it is as short as possible and ha
few nodes at the bottom as is possible. Note that there 
be many ways to build a tree that is as short as poss
Nodes that are higher in the tree have a greater chanc
being tested. To reduce the number of separate classe
described earlier), it is possible to construct a tree t
maximizes the trials that could possibly link two classe
For example, in Figure 1 part 3, either F or C could 
placed at the top to produce a balanced tree. If previ
trials had left F in a separate class from the other sample
would be better to place F at the top of the tree so it wo
be used in more trials.
4
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Figure 1 An example of a binary tree sorting

An example of a binary tree being used to sort samples A,B,C,D, E, F, w
quality in that order.
1. The first sample, C, is chosen at random. The sample F is then comp
to it, and judged as having higher quality.
2. Sample B is then compared to C, and since it is judged to have lo
quality, it is not compared to F.
3. Sample E is compared to C and judged to have higher quality, and 
to F and judged to have lower quality.
4. After D is added with the same procedure, the tree has beco
unbalanced.
5. The tree is balanced, and then A is added.

Figure 2 Density plot of the number of trials with the tree method

The figure shows the number of trials in the comparison matrix from
simulated experiment with 20 test samples and 10 subjects. Each sq
represents the number of times that pair of samples was compared, 
white representing 10 comparisons and black representing no comparis
The rows and columns are ordered in ascending quality units, which 
known since the data is from a simulated experiment. As can be seen, m
more trials are conducted between samples with similar quality (near 
diagonal), than are between samples with very different quality (in t
upper right and lower left corners). If the complete matrix method had be
used, the figure would be solid white, since 10 trials would have be
conducted between each pair. This simulation followed the same meth
described in the following section, and this section contains more det
about the simulation.

This process can be repeated for each subject. T
probability that a set of samples will be compared 
inversely related to their distance in units of d’. The en
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result is a comparison matrix with many more trials betwee
close samples and few trials between distant samples. In 
way, the method adapts to the distribution of the samples 
the quality dimension, to conduct trials in the places th
provide more information.

The tree method may be difficult to conduct with
hardcopy samples, due to the complex order of presentati
In this case, alternative sorting methods may simplify th
record keeping and presentation order. Some version of 
Quick Sort or Heap Sort algorithms8 may provide an
efficient and easy to implement method.

Efficiency of the Tree Method
We can demonstrate the improvement in efficiency b

means of a Monte Carlo simulation. We simulated a
experiment where there were 20 samples. Each sample 
a quality value q, that was chosen from a random ev
interval that spanned 40 standard deviations. All of th
assumptions described in the first section were simulate
After the set of q values were chosen, two experiments we
simulated.

To simulate an observer making a comparison betwe
two samples qi and qj under the assumptions described i
section 1, a normal random value with unit standa
deviation was added to the two values, and the larger of 
two was judged as having higher quality. After a set o
simulated comparisons was made, the regression proced
previously described was used to estimate the original
values from the comparison matrix.

We used two methods to choose which compariso
should be made. In the first method, we used the compl
matrix procedure. Every pair was compared an equ
number of times. In the second method, we used the bin
tree method described. The mean-squared error (MS
between the estimate and the actual q value was th
computed.

Figure 3 shows the MSE as a function of the number 
trials for the two methods. The first point of the upper curv
shows the MSE of the estimated quality after the comple
matrix method was used with 5 trials between each p
(950 trials total). The first point in the lower curve show
the MSE with the binary tree method. The samples we
sorted using the tree method 15 times (926 trials total). T
Binary tree method reduced the MSE of this first point by
factor of 2 ± .3. The error bars in the figure show the
estimated error in the shape of the curves (since t
simulation was only run 10 times).

The MSE for the binary tree method is lower when th
same number of trials are used. Likewise, for the sam
MSE, the binary tree method requires fewer trials. It can 
seen that the binary tree method produced about the sa
MSE with 15 runs (926 trials) MSE = 2.2 ± .3, as the
complete matrix did with 40 runs (7600 trials) MSE = 2.1 ±
.3.

Violations of the Assumptions
 The assumptions can fail in many instances. Quali

can be multidimensional when there is no single quality lin
that can fit the data. The distribution of the perceive
quality of samples might not form a normal distribution, o
5
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might have different standard deviations for differe
samples. There may be a memory effect, where 
judgements are not really independent.

Figure 3 Error as a function of trials

This plot shows the result of running a simulated experiment to determ
the quality values of 20 samples. The error bars in the figure show 
estimated error in the shape of the curves (since the simulation was 
run 10 times

Violations of the assumptions will result in a fit that ha
a larger than typical residual stress, which should be tes
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One method that can be used to estimate the typical stre
to use a Monte Carlo simulation as above. The resid
stress from the fit to real data is compared to the resid
stress from a fit to modeled data2. If the actual data has
significantly larger residual stress, one or more of the cl
V assumptions was probably violated.
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